K-best Iterative Viterbi Parsing
نویسندگان
چکیده
This paper presents an efficient and optimal parsing algorithm for probabilistic context-free grammars (PCFGs). To achieve faster parsing, our proposal employs a pruning technique to reduce unnecessary edges in the search space. The key is to repetitively conduct Viterbi inside and outside parsing, while gradually expanding the search space to efficiently compute heuristic bounds used for pruning. This paper also shows how to extend this algorithm to extract K-best Viterbi trees. Our experimental results show that the proposed algorithm is faster than the standard CKY parsing algorithm. Moreover, its K-best version is much faster than the Lazy K-best algorithm when K is small.
منابع مشابه
Iterative Viterbi A* Algorithm for K-Best Sequential Decoding
Sequential modeling has been widely used in a variety of important applications including named entity recognition and shallow parsing. However, as more and more real time large-scale tagging applications arise, decoding speed has become a bottleneck for existing sequential tagging algorithms. In this paper we propose 1-best A*, 1-best iterative A*, k-best A* and k-best iterative Viterbi A* alg...
متن کاملIterative CKY Parsing for Probabilistic Context-Free Grammars
This paper presents an iterative CKY parsing algorithm for probabilistic contextfree grammars (PCFG). This algorithm enables us to prune unnecessary edges produced during parsing, which results in more efficient parsing. Since pruning is done by using the edge’s inside Viterbi probability and the upper-bound of the outside Viterbi probability, this algorithm guarantees to output the exact Viter...
متن کاملViterbi Training Improves Unsupervised Dependency Parsing
We show that Viterbi (or “hard”) EM is well-suited to unsupervised grammar induction. It is more accurate than standard inside-outside re-estimation (classic EM), significantly faster, and simpler. Our experiments with Klein and Manning’s Dependency Model with Valence (DMV) attain state-of-the-art performance — 44.8% accuracy on Section 23 (all sentences) of the Wall Street Journal corpus — wit...
متن کاملA* Parsing: Fast Exact Viterbi Parse Selection
We present an extension of the classic A* search procedure to tabular PCFG parsing. The use of A* search can dramatically reduce the time required to find a best parse by conservatively estimating the probabilities of parse completions. We discuss various estimates and give efficient algorithms for computing them. On average-length Penn treebank sentences, our most detailed estimate reduces the...
متن کاملProbabilistic Feature Grammars
We present a new formalism, probabilistic feature grammar (PFG). PFGs combine most of the best properties of several other formalisms, including those of Collins, Magerman, and Charniak, and in experiments have comparable or better performance. PFGs generate features one at a time, probabilistically, conditioning the probabilities of each feature on other features in a local context. Because th...
متن کامل